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Close to the liquid gas critical point, the linear treatment of the symmetrical one-
component F4 model to observe the fluid-restricted universality of the subclass
of pure fluids is reversed. The comparison with the fitting results obtained from
the recent applications of the crossover description to CO2, CH4, C2H4, C2H6,
R134a, SF6, and H2O confirms that the dimensionless characteristic two scale
factors involved in this description are: (a) the critical compressibility factor and
(b) the slope at the critical point of the reduced potential PT

Tc
Pc

along the critical
isochore. For the two-phase domain along the critical isochore, a precise for-
mulation for the extension range of the fluid-restricted universality is given in
terms of the reduced scaling size ag−=t

−

ac
of the critical density fluctuations,

expressed as a function of the dilated scaling field which measures the distance
to the critical point below Tc. The explicit definition of the microscopic length
scale ac=(

kBTc
Pc
)
1
3, which characterizes the short-range of the microscopic interac-

tion, gives a correlative estimation of the crossover domain when t− Ã ac.

KEY WORDS: critical phenomena; equation of state; gas-liquid critical point;
gas-liquid coexistence curve; scaling factors.



1. INTRODUCTION

Critical phenomena strike the imagination because they correspond to
extreme values (infinity or zero) for some key properties of the system at its
critical point [1]. The nature of these singular properties of critical systems
is well understood in terms of the asymptotic critical phenomena univer-
sality [2]. A one-component fluid belongs to the d=3, n=1 universality
class (d is the dimension of the space and n the dimension of the order
parameter) for which the three-dimensional uniaxial Ising system near the
Curie point is currently used as a predictive model [3]. Indeed, the singular
asymptotic behavior of fluid properties satisfies scaling power laws with
universal critical exponents and universal scaling functions near the liquid-
gas critical point, revealing two independent amplitudes which are the only
two system-dependent parameters [1–3]. As a matter of fact, the two-scale-
factor universality is expected for all systems with short-ranged interac-
tion having an isolated transition point [4]. But this universal behavior is
valid only within the limit tLo ± 1, where the size t of critical fluctuations
of the order parameter is greater than the molecular interaction range (here
characterized by the microscopic length L−1o ). With this limit is associated a
domain, the asymptotic critical domain DAS, within which some corrective
contributions are assumed to be so small that they can be neglected [5].
Then, the size of DAS where the asymptotic power laws apply can be
nonuniversal [6].

More precisely, the analytical treatment by the renormalization group
theory (RGT) relates the two renormalized relevant fields t (the tempera-
ture-like field) and h (the ordering field) of the symmetrical one-component
F4 model to the corresponding physical fields Dyg and Dhg of the selected
one-component F4-like system as follows [6–9]:

t=G Dyg+O{(Dyg)2, (Dyg Dhg)} (1a)

h=Y Dhg+O{(Dhg)2, (Dyg Dhg)} (1b)

Neglecting the second-order terms which account for analytic correc-
tions to scaling, the linearized equations (1a) and (1b) involve the two-scale-
factor universality through the introduction of the two nonuniversal con-
stants G and Y. G characterizes the size of DAS along the critical isocline
for a constant zero value of the order parameter, while Y characterizes the
size of DAS along the critical isocline for a constant zero value of the order-
ing field conjugate to the order parameter. Each critical system is then
characterized by two independent amplitudes of the asymptotic power
laws, or, alternatively, by G and Y. In the absence of an explicit calculation
of G and Y by the theory, the asymptotic power law behavior (even

998 Garrabos, Le Neindre, Wunenburger, Lecoutre-Chabot, and Beysens



including the self-consistent Wegner’s corrections to scaling [5]), is valid
over an undetermined limit of DAS. Then, the comparison between singular
behavior of equivalent systems is not easy and it is difficult to know the
nature of a possible criticality beyond DAS. A fortiori, it is also difficult to
develop a thermodynamic surface that not only incorporates the theoretical
asymptotic critical behavior inside (or eventually outside) DAS, but that also
accounts for the correct regular behavior further away from the critical
point. This challenge refers to the crossover problem whose complete
theoretical description is very complex and is still the object of active
research.

Within all the real critical points belonging to the d=3, n=1 univer-
sality class, only the liquid-gas critical point is an isolated point. This
underlines once more the basic character of the liquid-gas critical transition
of a pure fluid in the field of critical phenomena. Inverting the RGT
method whose predictions are supposed valid for pure fluids, a selected one-
component fluid (for example, xenon) can then be used as a standard
system provided that the two relevant fields and the associated system-
dependent factors G and Y are known independently. Applying the scale
dilatations defined by Eqs. (1a, 1b) will give back the fluid-restricted uni-
versality of such a fluid subclass [10], [11]. This approach, originally
proposed by one of us [11], [12] and briefly summarized below, is used in
this paper in order: (a) to compare this fluid-restricted universality to the
one implicitly given by the crossover description of critical fluids as
proposed by Albright et al. [13, 14], and (b) to analyze the extension of
DAS in the coexisting two-phase domain.

2. PHENOMENOLOGICAL SCALE FACTORS FOR PURE FLUIDS

The basic idea of the phenomenological approach developed in
Refs. 11 and 12 was to postulate that all the thermodynamics informations
needed to describe the immediate vicinity of the liquid-gas critical point are
contained in the location of this point and of its tangent plane to an
appropriate characteristic surface. The addition of the critical isochoric
thermal expansion coefficient at the critical point, cc, to the three classical
critical parameters, temperature, Tc, pressure, Pc, and number density,
n
c
(=rc

mp
), is then sufficient to complete this location. rc is the critical

mass density and mp is the molecular mass of the constitutive particle.
cc=[

dPsat
dT ]CP=[(

“P
“T)rc]CP, is the limiting slope at the critical point (CP),

common to the saturated vapor-pressure curve (two-phase range) and to
the critical isochore curve (one-phase range) in the P−T diagram.
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In order to obtain a closed description of the asymptotic singular
behavior, these four input coordinates yield to four significant parameters,
two of them bc=kBTc and ac=(

kBTc
Pc
)1/3 being homogeneous to an energy

and a length, respectively, and the other two Yc and Zc being nondimen-
sional as shown below. kB is the Boltzmann constant. The thermodynamic
properties and static correlation functions of a known mass of a pure fluid
are made dimensionless by expressing them in units of bc and ac. Then bc
and ac define a fluid characteristic set of scaling units of energy and length,
including only two intensive input coordinates, Tc and Pc. The basic
modeling of a binary radial interaction by the short-ranged Lennard–Jones
potential FLJ(r) yields their microscopic forms, bc Ã eLJ and ac Ã 2reLJ ,
where eLJ is the depth of the potential energy at equilibrium position, reLJ .
Except for quantum fluids, the characteristic length scale ac Ã L

−1
o is a

measure of the range of the attractive dispersion forces [11]. The ratio t
ac

provides a direct measurement between the size t of the critical fluctuations
and the molecular interaction range ac.

The two dimensionless characteristic factors Yc and Zc are defined
from the other two remaining basic input coordinates, cc, and n

c
=rc
mp

. They
are made nondimensional through the following equations [11]:

Yc=cc
Tc
Pc
−1 (2)

Zc=
Pc
nckBTc

=
4p
3
1
nic

(3)

Note that Zc is the usual critical compressibility factor. As emphasized
by the second equality in Eq. (3), the inverse quantity 1

Zc
is proportional to

the critical number of interacting particles, nic=ncvi0 , summed in the scale
unit of the spherical volume, vi0=

4
3 pa

3
c . vi0 represents the critical interac-

tion volume of radius ac (the interaction range), formally equivalent to the
critical cell unit of each spin in a spin system, or to the critical lattice
volume of each site in the lattice gas system. We will return on the physical
meaning of Yc in Section 3.

The explicit forms of Eqs. (1a, 1b) now depend on the choices made
for the reduced singular free energy density analogous to the singular free
energy for the three-dimensional Ising model. An extensive literature
addresses this problem, mainly to exhibit the non-symmetrical character of
pure fluids, and to choose the product mn (where m is the chemical potential
per particle, conjugate to the number density n= r

mp
) as density of the

symmetrical potential. We are only concerned here with the thermody-
namic analogies [3], [6] that stipulate Dmg=mg−mg

c=[
m

kBTc
− mc
kBTc
] as an
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external ordering field, conjugate to the order parameter, Dng=ng−ngc=
(r−rc)

kBTc
mpPc

(Dmg is analogous to the reduced magnetic field Hg for the
three-dimensional Ising model (Dmg Ã Dhg in Eq. (1b)), while Dng is analo-
gous to the reduced magnetization Mg of this model). Here, the reduced
number density, ng= r

rcZc
, differs from the usual dimensionless mass

density, r

rc
. Then, for the one-component fluids, the usual physical field

parameters are Dyg=T
Tc
−1, and Dng= 1

Zc
Drg (with Drg= r

rc
−1). They are

dilated in their scaling form as defined by Eqs. (1a, 1b) in the RGT linear
treatment, introducing the corresponding fluid scale factors G (along the
critical isochore) and Y (along the critical isotherm) that read [12]:

G=Yc (4a)

Y=(Zc)−
3
2=(Yr Zc)−1 (with Yr=(Zc)

1
2) (4b)

In the second form of Eq. (4b), the scale factor Yr=(YZc)−1 dilates
the usual reduced density difference Drg. The corresponding scale dilata-
tions for the order parameter m, conjugate to h, are

m=Y−1 Dng=(Zc)
3
2 Dng=Yr Drg=(Zc)

1
2 1 r
rc
−12 (5)

It is now easy to show that two selected independent amplitudes of the
standard pure fluid, hereafter denoted t

+
o
ac

and Dc, and its corresponding
two scale factors Yc and Zc, are unequivocally linked through the following
two master combinations [11], [12]:

1t+o
ac
2
1
n

Yc=YG (6a)

(Dc)
−2

3(d+1) Zc=FG (6b)

t
+
o
ac

is the amplitude (n being the corresponding universal critical expo-
nent) of the dimensionless correlation length divergence along the critical
isochore in the one-phase region. Dc is the amplitude (d being the corre-
sponding universal critical exponent) of the asymptotic shape of the critical
isotherm for Dmg. Due to their scale-factor nature, the phenomenological
constants YG and FG obtained from this standard pure fluid will be the
same for all pure fluids [11], leading to the definition of the restricted
universality of the corresponding fluid subclass. Then, the complete set of
the dimensionless asymptotic amplitudes of each pure fluid can be obtained
from the complete set of the d=3, n=1 universal ratios predicted by the
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RGT [8, 16]. In a similar way, a preliminary estimate [12] of the first-
term amplitude for the dilated confluent correction to scaling allows to
calculate all the others amplitudes from the corresponding theoretical uni-
versal ratios [8, 17]. In Refs. 16 and 17 we give only the numerical values
of the amplitudes involved in the present work, which incorporate some
minor adjustments [11], [12] due to the recent theoretical calculations of
the universal ratios [8].

Note that the RGT [10] can also be used to calculate universal
amplitudes appearing in the power law scaling functions. For example, the
dimensionless correlation length ag+ along the critical isochore above Tc has
been obtained as an explicit Wegner expansion of the dimensionless scaling
field t as follows:

a
g+=Z+t (t)

−n [1+a+t (t)
D+·· · ] (7)

where the Wegner expansion of the corrections to scaling is limited here to
the first-order. D is the universal critical exponent of the first confluent
correction to scaling. In Eq. (7), Z+t and a+t can be estimated from the
nonlinear analysis of the F4 model. However, as previously analyzed in
Ref. 10 and, as shown by the explicit ac factor in the first master equation
(6a), the comparison between experiments and field theory calculations
allows a suitable choice of the characteristic length to be found for the
reduction into dimensionless quantities. Using our suitable choice of ac, we
identify ag+ with the ratio t

+

ac
and obtain the following relation between the

numerical constants Z+t and YG,

Z+t=(YG)
n=0.57 (8a)

The numerical value (0.57) for pure fluids differs from the corre-
sponding value (0.48) obtained by field theory modelling [10]. This differ-
ence is due to the nonuniversal character of the reduction process of the
physical quantities, which is always defined from an unknown density con-
stant that depends on the choice of the length scale factor used to reduce in
a nondimensional form the free energy per unit volume.

In a similar way, the dimensionless ordering field hc along the critical
isotherm is obtained as a nonasymptotic function (hc=ZDc(|m|)d [1+
ahc(|m|)D/b+·· · ] with ZDc and ahc as constant amplitudes) of the dimen-
sionless order parameter m, leading to the second relation between the
numerical constants ZDc and FG that reads

ZDc=(FG)−
3(d+1)
2 =249 (8b)
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Provided that the reduction process uses the two characteristic length
scale ac and energy scale bc for each pure fluid, the two numerical con-
stants appearing in Eqs. (6a, 6b) (respectively, Eqs. (8a, 8b)) define the
restricted universality of the one-component fluid subclass. Within this
subclass, the linear scaling transformations (Eqs. (1a, 1b)) involve the use
of the two phenomenogical scale factors Yc and (Zc)−

3
2 instead of G and Y,

respectively.

3. COMPARISON WITH THE FITTING RESULTS OF THE
CROSSOVER MODELS

Now, we are able to compare the results obtained using Eqs. (1a) to
(8b) to the recent results [13–15] obtained for CO2, CH4, C2H4, C2H6,
R134a, SF6, and H2O on the basis of the crossover description for the
thermodynamic properties of critical fluids proposed by Albright et al.
[13]. The Helmholtz free energy per unit volume is the free energy density
selected as the critical potential. In this case, our characteristic parameter
Yc is identified as being the amplitude −A1 of the linear term in the analytic
expansion of the regular potential defined in Albright et al. analysis. Along
the critical isochore, the dimensioned potential leading to the weak diver-
gence of the specific heat is P

T , whose critical slope equals Yc in its non-
dimensional form P

T
Tc
Pc

.
At the first-order of confluent correction to scaling for the Wegner

expansion, the Albright et al. description uses scale dilatations equivalent
to Eqs. (1a) and (5) [13–15]. In the asymptotic limit defined above and for
symmetrical systems, only each first-order term of these scale dilatations is
considered, that reads tA=ct Dyg and mA=cr Drg, respectively in Albright
et al. notation. For higher order terms, the crossover description is more
complex, precisely due to the inclusion of the crossover function from the
critical region to the classical region, and also on account of the nonsym-
metrical aspects of real fluids. In order to formulate this extension, it is
necessary to add four characteristic nondimensional parameters, whose the
relative importance is evaluated in the last part of this paper. Two of them
are the crossover parameters, ū and L in Albright et al. notation. ū is
related to the F4-theory coupling constant u, which is rescaled by L4−d in
the F4-term. L is an ultraviolet cutoff wave number. The scaled variable ū
reads ū= u

u* , where ug is the universal coupling constant of the RGT fixed
point for three-dimensional Ising-like systems [15]. The other two terms
are the nonsymmetrical parameters, c and d1 in Albright et al. notation. c is
a coefficient which determines the strength of the mixing of the field
variables, while the coefficient d1 represents a global asymmetry. As a first
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result, six parameters are free in the fitting procedure. Moreover, in order
to keep the renormalized Helmholtz free energy finite at the critical point,
and to obtain a correct classical free energy far away from the critical
point, a suitable choice of the rescaling factors is needed. These factors are
generally functions of the crossover parameters and the dimensionality of
the system. Several published procedures differ in the renormalization
schemes used and in the explicit consequences of the existence of a finite
cutoff L for the critical fluctuations. In the Albright et al. procedure, the
coupling between the six parameters in the fitted range including DAS is not
completely defined. As a final result, the universal ratios between leading
amplitudes, and/or between the first confluent amplitudes for correction to
scaling, do not exactly agree with more recent predictions of RGT [8],
[16], and high-temperature expansions [9].

In light of the above discussion, the universal critical nature of this
coupling can be revealed by fitting results, if the effective extension of the
critical asymptotic domain is large enough to recover the self-consistency of
the theory in the fitted range. To show this point, we need straightforward
calculations of each respective scale factor ratios Ycct and (Zc)

1/2

cr
as a function

of the crossover product ū L that gives the same estimates for the two
independent asymptotic amplitudes t

+
o
ac

and Dc, respectively (all the leading
amplitudes being proportional to (ū L)D/n in the Albright et al. crossover
description). From trivial combinations of the results of Refs. 12 and 15,
the calculated coupling functions are

Yc
ct
=kt(ū L)

1
n
−2 (9a)

(Zc)
1
2

cr
=kr(ū L)

g

2 (9b)

g is another universal critical exponent associated to the density fluc-
tuations at the critical point which is introduced here in order to close the
hyperscaling between correlations and thermodynamics [16]. The pre-
factors kt and kr are then unequivocally related to the universal numerical
values that are characteristic of the fluid-restricted universality [8],

kt=5
Z+t

R+t (Rn)
−1d
6
1
n

=2.2748

kr=r2(1+g) ZDc
1ug
2
2
2−g
1+g
s
d−2+g
2d

=0.2127
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Fig. 1. Fluid scale-factor correlations as functions of ū L. Upper part / left axis: Ycct ; Lower
part / right axis: (Zc)

1/2

cr
; Dashed curves: exact scale dilatation description (see text and Refs. 12

and 15); Full curves: approximate self-consistent crossover description (see text and Refs. 12,
14, and 15); Symbols: O CO2; @ CH4; o C2H4; × C2H6; + R134a; f SF6; and e H2O (results
of the crossover description for each fluid, see Refs. 13 and 14).

In the above equations, the values of the universal quantities n, g, R+t ,
Rn, and ug are estimated from the exact RGT [8]. However, the small
difference between pre-factors (ktA=2.429; krA=0.219 obtained from
Ref. 15) can be easily calculated also using the corresponding values
obtained in the approximate crossover description [15]. Figure 1 illustrates
the correlations for the exact (dotted curves) and approximate (full curves)
cases.

We note a better agreement when the (approximate) consistency of the
crossover description is allowed (see Fig. 1). This self-consistent agreement
confirms the expected correlation between the free parameters in the fit and
the fixed values of Yc and Zc. Note also that the crossover function has an
explicit separation between the contributions to the leading amplitudes
(proportional to (ū L)D/n) and to the first confluent amplitudes (propor-
tional to ū L(1− ū)) [15]. Then, the results reported in Fig. 1 are a clear
confirmation that the first confluent correction terms to scaling are also
governed by the same two asymptotic scale factors, as already demon-
strated for xenon [10].

Equation of State of a Critical Pure Fluid 1005



4. THE ASYMPTOTIC AND EFFECTIVE CRITICAL DOMAINS,
AND THE CROSSOVER DOMAIN, IN THE TWO-PHASE RANGE

Now, we analyze the extension of DAS into the two-phase domain. The
pure fluid-restricted universality can be shown for the two-phase coexisting
densities, rL (liquid) and rV (vapour), expressing mLV×(−t)−b as a func-
tion of −t from Eqs. (1a) to (5), without any adjustable parameter.
mLV=(Zc)

3
2 DngLV=(Zc)

1
2 Drg

LV is the dilated order parameter for the two-
phase range, where DngLV=

nL −nV
2nc

and Drg
LV=

rL −rV
2rc

. It is currently admitted
that Drg

LV is the symmetrical form of the order parameter for the one-
component fluids. Figure 2 shows the results for selected pure fluids where
we have used the density difference values rL−rV, published in table data
of the literature as rough entry values.

The comparison between, (a) the range −t > 2×10−1, where signifi-
cant differences are observed for the behavior of the dilated forms of the
coexistence curve near the triple point, and (b) the asymptotic domain
−t [ 10−3 close to the critical point, enhances the universal asymptotic

Fig. 2. mLV (− t)−b as a function of −t (lower log-axis) or as a function of
a
g−=t

−

ac
=Z−t (−t)

−n [1+a−t (−t)
D] [17] (upper log-axis); Full curve 1: first-order

Wegner expansion (mLV=Z
−
M (−t)

b [1+a−M (−t)
D], see text and Ref. 17);

Dotted curve 2: effective power law (mLV=0.563 (−t)0.355, see text and Ref. 18);
Others curves: experimental results for CO2; CH4; C2H4; C2H6; R134a; SF6; and
H2O (see references cited on Refs. 13 and 14). Arrows and associated labels: DAS
is the asymptotic critical domain covering the range −t M −tAS, with
−tAS 4 10−3; DEX is the extended critical domain covering the range −t M −tEX,
with −tEX 4 2×10−2; DCO corresponds to the crossover in the range −tCO N

−t N −10×tCO, with −tCO 4 10−1; (see also the text).
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character of their singular behavior when −t goes to zero. The same pure
fluid-restricted universality is shown close to the critical point whatever the
nature (gas or liquid) of the coexisting phases. This observation can be
easily made using Drg+=(rLrc)−1 (liquid branch), and Drg−=1−(rVrc)
(vapor branch) in addition to Drg

LV. This result confirms that the fluid-
restricted Wegner expansion limited to the first order mLV=Z

−
M (−t)

b [1+
a−M (−t)

D] [17] (see the full curve 1 in Fig. 2) is completely specified by the
two-scale-factors (Eqs. (4)). Taking into account the relation between the
nondimensional correlation length ag− and −t along the critical isochore
below Tc, the upper axis in Fig. 2 can be directly labelled in units of
a
g−=t

−

ac
=Z−t (−t)

−n [1+a−t (−t)
D] [17]. This latter expression, limited to

first order of the fluid-restricted Wegner expansion, describes the scaling
behavior of the correlation length in the coexisting two-phase range (t < 0),
as Eq. (7) describes the one in the one-phase range (t > 0). For −t [
−tAS 5 10−3, ag− \ 30. So that, inside this domain, now defined as being
the asymptotic critical domain DAS for the one-component fluids, the
typical size of the critical fluctuations is always larger than the range of the
molecular interactions.

In Figure 2, another interesting feature is revealed by the dotted curve
2 of effective master equation mLV=Zeff (−t)beff, where Zeff=0.557 and
beff=0.355. This curve suggests a quasi-universal behavior in the limited
intermediate range 10−2 < −t < 7×10−2, that is outside the asymptotic
domain of validity for the Wegner expansion limited to first order. As a
matter of fact, using the above power law with effective exponent, we are
able to recover all the previous descriptions of the gas-liquid coexistence
curves based on the scaled equations of state which have used beff=0.355
[18]. In addition to this quasi-universal behavior, we note that the critical
correlation length always remains 3 or 4 times larger than the range of the
molecular interactions for −t < −tEX 5 2×10−2. So that, we propose one
more decade extension (ag− \ 3) of the critical domain, noted now DEX, up
to the upper limit −tEX. Inside DEX, master scaling behavior expressed in
terms of the appropriate dilated two-phase variables are expected, whatever
the one-component fluid, as illustrated in Fig. 2 for the rescaled order
parameter case. In this extended domain, the fluid-restricted universality is
described only by the two asymptotic scale factors defined by Eqs. (1a) and
(1b). The functional form of the rescaled master behavior is still an open
problem due to the implicit coupling between the poor knowledge of higher-
order terms of the Wegner expansion and the complex functional form of
the global crossover description, as mentionned above. Moreover, the non-
symmetrical form of the liquid-gas coexistence curve appears to have a
main influence outside DAS. Nevertheless its lowest order resulting contri-
bution to the symmetrical form seems sufficiently small in the extended
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domain DEX to avoid the introduction of a new characteristic parameter,
except for the slope of the rectilinear density diameter observed precisely in
this intermediate range.

In order to show now the appearance of the crossover with a mini-
mization of the spurious effects due to the correlations between amplitudes
and exponents of the complementary Wegner expansion-like terms, we
have reported in Fig. 3 the behavior of the effective exponent beff=
d[Ln(DrgLV)]
d[Ln(−Dy*)] as a function of −Dyg for (the standard fluid) xenon using exten-
sive literature results [19–11]. The characteristic parameter Yc(Xe)=4.9
[11] of the standard fluid gives the dilated universal scale t=Yc(Xe) Dyg

reported on the upper axis of this Fig. 3, that corresponds to the lower axis
of Fig. 2. This abscissa link between Figs. 2 and 3 allows the analysis using
the temperature distance to Tc(Xe)=289.74 K, as well as the dilated scaling
field −t. The curve 1 in Fig. 3 corresponds to the first-order Wegner
expansion beff=b[1+

D
b a

(1)
B(Xe)(−Dy

g)D], where a−M=
a(1)B(Xe)

[Yc(Xe)]
D [17], with

a (1)B(Xe)=1.4 [11]. The curves 2 to 8 correspond to the literature results (see
details in Ref. 19). The length of each curve 2 to 8 indicates the respective
experimental temperature ranges, (a) when a constant value for the

Fig. 3. beff for xenon as a function of −Dyg (lower log-axis) or as a function
of −t (upper log-axis); Curve 1: from the first-order Wegner expansion
(beff=b[1+

D
b a

(1)
B(Xe)(−Dy

g)D], see Ref. 17, with b=0.3258, D=0.5, and
a (1)B(Xe)=1.4 [11]); Lines 2 to 8 are from the literature results (see Ref. 19 for
details). The length of each curve indicates the covered experimental tempera-
ture ranges (see text); Line 0 is a guide to show the crossover link between the
highest plateau value ( Ä 0.36−0.37) and the lowest value ( Ä 0.31−0.32) of beff
far from the critical point. The arrows and the associated labels DAS, DEX, DCO,
−tAS, −tEX, and −tCO are defined in the caption of Fig. 2 (see also the text).
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effective exponent is observed (straigth lines, using the power law
Drg

LV=Beff (−Dy
g)beff to fit the data with Beff and beff as free parameters)

and (b) when the fitting was performed in terms of the correction-to-scaling
form of the Wegner expansion (curved lines). So that, away from the criti-
cal point, the departures of the literature curves from curve 1 reflect the
relative global contribution of the complementary effects discussed above.
The resulting characteristic behavior of beff associated to the nonasymp-
totic crossover is then well-emphasized by the line 0 crossing the value
a
g− Ä 1. We note that the line 0 is only a guide to show the functional link

between the highest plateau value ( Ä 0.36−0.37) and the lowest value
( Ä 0.31−0.32) of beff far from the critical point. This heuristic method is
appropriate to define the scaling field decade −tCO [ −t [ −10×tCO,
which starts at −tCO 5 10−1, as being the range where the crossover from
the nonclassical behavior close to the critical point, to the mean-field
behavior further away from the critical point occurs.

5. CONCLUSION

From the present analyses of the results shown in Figs. 2 and 3, we
note three conclusive remarks. (a) For xenon, the extension of DAS, corre-
sponding to the first-order Wegner expansion, is no more valid for
−Dyg \ 2×10−4 (or (Tc−T)Xe \ 60 mK). Within this asymptotic critical
domain where t

−

ac
N 30, (or −t M −tAS, see the corresponding arrows in

Figs. 2 and 3), all the pure fluids can be considered as ideal critical fluids
showing a one-component fluid-restricted universality similar to the one
predicted from the symmetrical one-component F4 model, except for a
minor numerical adjustment [11, 16]. (b) Our extended critical domain
DEX is valid up to a reduced temperature distance −Dyg Ä 3−4×10−3 for
xenon (or (Tc−T)Xe Ä 1 K). The typical values t

−

ac
¬ 3 (or −t M −tEX, see

the corresponding arrows in Figs. 2 and 3) can be considered as a common
lower limit in the case of the eigth selected pure fluids. (c) For xenon, the
non-asymptotic crossover is demonstrated to be in the range DCO where
−Dyg \ 2×10−2 (the curve 0 corresponds to the temperature range 6
K M (Tc−T)Xe M 60 K). In that case, t

−

ac
« 1 (or −t N −tCO, see the corre-

sponding arrows on Figs. 2 and 3). In light of the present work, its seems
now suitable to revisit the description of the nonsymmetrical and non-
asymptotic crossover characteristics of each pure fluid. As a special
mention related to the above purpose, we note the significant microscopic
differences between the gas-like and the liquid-like non-zero values of the
order parameter or the ordering field which, after crossover, permit to
recover the perfect gas description of the fluid at low-density (on the gas
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side) or the complex multiparameter description of the condensed matter
(on the liquid side).
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